Abstract
Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-diagonal matrix elements in a given basis, are known to pose severe limitations on the efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infamous sign problem. We study the computational complexity associated with ‘curing’ non-stoquastic Hamiltonians, i.e., transforming them into sign-problem-free ones. We prove that if such transformations are limited to single-qubit Clifford group elements or general single-qubit orthogonal matrices, finding the curing transformation is NP-complete. We discuss the implications of this result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.