Abstract

By enhancing the traditional static network (e.g., based on electric switches) with a dynamic topology (e.g., based on reconfigurable optical switches), emerging reconfigurable data centers introduce unprecedented flexibilities in how networks can be optimized toward the workload they serve. However, such hybrid data centers are currently limited by a restrictive routing policy enforcing artificial segregation: each network flow can only use either the static or the flexible topology, but not a combination of the two. This paper explores the algorithmic problem of supporting more general routing policies, which are not limited by segregation. While the potential benefits of non-segregated routing have been demonstrated in recent work, the underlying algorithmic complexity is not well-understood. We present a range of novel results on the algorithmic complexity of non-segregated routing. In particular, we show that in certain specific scenarios, optimal data center topologies with nonsegregated routing policies can be computed in polynomial-time. In many variants of the problem, however, introducing a more flexible routing comes at a price of complexity: we prove several important variants to be NP-hard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.