Abstract
SummaryModeling of hybrid systems using mixed logical dynamical (MLD) systems is an art. The MLD framework often introduces numerous constraints and auxiliary binary and continuous variables, which, in turn, increase the computational complexity of the optimization problems. This paper presents an automaton‐based realization for discrete‐time hybrid automaton (DHA) with both controlled and uncontrolled switching phenomena by which it is attempted to develop efficient translation techniques to MLD systems and reduce the total number of decision variables in the MLD model. Based on this DHA model, a modified version of MLD systems, which is called extended MLD (EMLD) is formally defined and represented. EMLD is derived based on the concept of forward evolution in which the one‐step delay between the change of discrete states and continuous dynamics of the existing evolution in the conventional MLD systems is eliminated. The result is that the size of EMLD model in terms of the number of variables, which determines the complexity of the synthesis problems on MLD systems, is reduced. The dynamical properties such as the nonblocking, determinism, and well‐posedness of the proposed DHA and its equivalent MLD models are investigated, and the necessary and sufficient conditions are derived. The effectiveness of the proposed ideas is shown by the numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.