Abstract

This paper addresses two key limitations of the unscented Kalman filter (UKF) when applied to the simultaneous localization and mapping (SLAM) problem: the cubic, in the number of states, computational complexity, and the inconsistency of the state estimates. In particular, we introduce a new sampling strategy that minimizes the linearization error and whose computational complexity is constant (i.e., independent of the size of the state vector). As a result, the overall computational complexity of UKF-based SLAM becomes of the same order as that of the extended Kalman filter (EKF) when applied to SLAM. Furthermore, we investigate the observability properties of the linear-regression-based model employed by the UKF, and propose a new algorithm, termed the observability-constrained (OC)-UKF, that improves the consistency of the state estimates. The superior performance of the OC-UKF compared to the standard UKF and its robustness to large linearization errors are validated by extensive simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.