Abstract

The present paper reported a hybrid structure for the optical recognition of PA (picric acid). This dye-MOF structure, named as R6h@EuBTC, consisted of a supporting matrix based on rare earth MOF and a sensing probe based on rhodamine dye, which was confirmed using XRD, IR, thermal and photophysical analysis. R6h@EuBTC's rhodamine absorption in visible region was enhanced by increasing PA concentrations, showing obvious color change and consequently colorimetric sensing. R6h@EuBTC's rhodamine emission component was increased by increasing PA concentrations, while its Eu emission component was slightly quenched by increasing PA concentrations, which offered self-calibrated sensing signals for ratiometric fluorescent sensing. Linear response and good selectivity were observed for both sensing channels with LOD of 3.9 μM. R6h@EuBTC's sensing mechanism towards PA was the combination of two procedures, which were the emission turn on effect of rhodamine component triggered by PA-released protons and the emission turn off effect of Eu component caused by its electron transfer procedure to PA, respectively. R6h@EuBTC's novelty was its two sensing channels and the practicability of naked eye detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.