Abstract

The delivery of grinding fluid to the contact zone is generally achieved via a nozzle. The nozzle geometry influences the fluid velocity and flow pattern on exit from the nozzle orifice. It is important to the efficiency of the process and to the performance of the operation that the fluid is delivered in a manner that ensures the desired jet velocity has adequate coverage of the contact zone. Often, assumptions about adequate coverage are based on visual inspections of the jet coherence. This paper provides new insight into the internal nozzle flows and the coherent length of a wide range of nozzle designs. The work presents a new analytical model to predict coherent length which is shown to correlate well with measured data from experiment. Recommendations are given to guide a user to optimal design of nozzles to ensure adequate fluid supply to the contact zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.