Abstract

A series of experimental precipitated calcium carbonates (PCCs) coated with commercial stearic acid (stearin), with the coating amount of stearin added to the PCC particles ranging from 3 to 13.5 wt %, were prepared in aqueous medium and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR and TGA results indicated that only calcium stearate is present without any free stearic acid left on the surface of the produced PCCs. It was also found that the calcium stearate formed on the coated surface is partially chemisorbed and partially physisorbed. Interestingly, the surface coverage of the chemisorbed stearate, determined by the DSC technique in about 3.25 wt %, was much lower than the theoretical full monolayer coverage (4.17 wt %) for the same set of particles. This result was confirmed by determining the amount necessary to cover the filler with a full monolayer of surfactant by means of a dissolution method where the amount of dissolved surface agent, after the coating reaction, was measured by gas chromatography (GC). In other words, a complete chemisorbed monolayer on the surface cannot be reached, even in the presence of an amount of stearate ions far in excess compared to those required by the stoichiometry. This can be explained by considering that the coating in aqueous medium is quite different from solvent or dry coating, since the process is controlled by micelle adsorption, followed by the collapse of micelles into double or multiple layers during the drying stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.