Abstract
The chemical diffusion in thin trilayer films of TM–TM100−xZrx–TM with an amorphous middle layer where TM = Co, Ni, or Fe and in amorphous Fe–Zr and Ni–Zr films with composition gradients has been investigated using Rutherford backscattering spectrometry. The growth of the amorphous layer in the trilayers, due to in-diffusion of cobalt and nickel, is initially found to be proportional to the square root of the time, t1/2, and subsequently found to level off before the compositions corresponding to metastable equilibria are reached. Irradiation, with 500 keV Xe+ ions, is found to promote the in-diffusion. This behavior is discussed in terms of structural relaxation effects and their influence on the metastable equilibrium. In amorphous Fe–Zr the chemical diffusivity is observed to be very sluggish. Contrary to the behavior in Co–Zr and Ni–Zr trilayers, the direction of the iron diffusion in Fe–Zr trilayers suggests a broad positive peak in the Gibbs free energy at a composition around 50 at. % Zr. It is argued that the sluggish chemical diffusivity of iron is directly related to the unusual composition-dependence of the Gibbs free energy for amorphous Fe–Zr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.