Abstract
In the paper, we first use the energy method to establish the local well-posedness as well as blow-up criteria for the Cauchy problem on the two-component Euler–Poincaré equations in multi-dimensional space. In the case of dimensions 2 and 3, we show that for a large class of smooth initial data with some concentration property, the corresponding solutions blow up in finite time by using Constantin–Escher Lemma and Littlewood–Paley decomposition theory. Then for the one-component case, a more precise blow-up estimate and a global existence result are also established by using similar methods. Next, we investigate the zero density limit and the zero dispersion limit. At the end, we also briefly demonstrate a Liouville type theorem for the stationary weak solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.