Abstract
The impacts of ocean deoxygenation on biodiversity and ecosystem function are well established in temperate regions, and here we illustrate how the study of hypoxia in tropical ecosystems can offer insights of general importance. We first describe how mechanisms of resilience have developed in response to naturally occurring hypoxia across three tropical ecosystems: coral reefs, seagrass beds, and mangrove forests. We then suggest that the vulnerability of these systems to deoxygenation lies in interactions with other stressors that are increasing rapidly in the Anthropocene. Finally, we advocate for the adoption of a broader community- and ecosystem-level perspective that incorporates mutualisms, feedbacks, and mechanisms of self-rescue and recovery to develop a better predictive understanding of the effects of deoxygenation in coastal ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.