Abstract
The Borel mapping takes germs at $0$ of smooth functions to the sequence of iterated partial derivatives at $0$. We prove that the Borel mapping restricted to the germs of any quasianalytic ultradifferentiable class strictly larger than the real analytic class is never onto the corresponding sequence space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.