Abstract

This paper explores the physical mechanisms responsible for the appearance of small blisters on the surface of temperature sensitive hydrogels as they deswell rapidly during their volume phase transition. For this, we develop a numerical model that couples the processes of hydrogel deswelling and blister growth due to the existence of a thin quasi-impermeable layer on its surface. The model points out that blister inflation originates at defects point under the gel's surface, under the effect of the increasing osmotic pressure in the gel as it undergoes its phase transition. Due to their large deformation, these blisters often experience a mechanical instability that triggers a sudden increase in their growth rate at the expense of their closest neighbors. Using a simple computational model, we then show that blisters are able to communicate via internal pressure and that these interactions are mediated by two characteristic time scales related to solvent transport within and between adjacent blisters. Our study finally indicates that these mechanisms can be controlled by temperature and the gel's cross-link density to achieve diversity of blister patterns on the gel's surface. The proposed analysis provides predictions that agree well with experimental observations of NiPAm gels which deswell in various conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.