Abstract

Auxetics are a class of materials and metamaterials with a negative Poisson’s ratio (ν) and have gained tremendous popularity over the last three decades. Many studies have focused on characterizing designs that allow obtaining a negative ν. However, some open issues remain concerning understanding the auxetic behavior in operational conditions. Studies have been centered on analyzing the response of specific auxetic topologies instead of treating auxeticity as a property to be analyzed in a well-defined structural context. This study aims to contribute to the investigation of auxetic materials with a structural application, focusing on maximizing performance. The field of application of auxetics for designing inserts was selected and a model of a nail-cavity system was created to determine the effects of different design choices on the system behavior by exploring relationships between selected parameters and the auxetic insert behavior. The exploration combines finite element modeling analyses with their surrogate models generated by supervised learning algorithms. This approach allows for exploring the system’s behavior in detail, thus demonstrating the potential effectiveness of auxetics when used for such applications. A list of design guidelines is elaborated to support the exploitation of auxetics in nail-cavity systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.