Abstract

The Bartle-Graves theorem extends the Banach open mapping principle to a family of linear and bounded mappings, thus showing that surjectivity of each member of the family is equivalent to the openness of the whole family. In this paper we place this theorem in the perspective of recent concepts and results, and present a general Bartle-Graves theorem for set-valued mappings. As application, we obtain versions of this theorem for mappings defined by systems of inequalities, and for monotone variational inequalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.