Abstract
We fix a ground field k and a finite separable extension K of k. To a Lie algebra L over k is associated the Lie algebra KL = K ⊗kL over K. If we forget the action of K, we can think of KL as a larger Lie algebra over k; in particular we can ask what is the automorphism group Autk KL of KL as a k-algebra. There does not seem to be any simple answer to this question in general; the purpose of this note is to give a simple condition on L which makes Autk KL quite easy to determine. Examples of algebras which satisfy this condition include the free nilpotent Lie algebras and the algebras of all n × n triangular nilpotent matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.