Abstract
In this article, we develop equivalent conditions for a certain class of monoidal transform to inherit either the property of being a completely integrally closed domain that satisfies the ascending chain condition on principal ideals, the property of being a Mori domain, the property of being a Krull domain, or the property of being a unique factorization domain, respectively. Such a class of monoidal transform is given in terms of an (analytically) independent set that forms a prime ideal in the base domain. Characterizations are provided illustrating the necessity of the “prime ideal” hypothesis when the base domain is a Noetherian unique factorization domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.