Abstract

This paper revisits double-sided self-pierce riveting to discuss the applicability limits related to the thickness of the sheets to be used in hidden lap joint connections. Special emphasis is given to thin sheets with thicknesses that are significantly smaller than those earlier reported in the literature. The overall methodology draws from experimental and numerical simulation to aspects related to the working principle of double-sided self-pierce riveting and geometric scalability of the chamfered tubular rivets. Results show that double-sided self-pierce riveting can be successfully applied in thin sheets and must be seen as an alternative to well-established joining processes such as conventional self-pierce riveting and resistance spot welding. In case of the latter, comparisons are made against double-sided self-pierce riveting regarding the force and energy requirements to assemble and destroy the resulting lap joints. Destruction of the joints is performed by means of shear tests and provides the maximum force and energy that both types of lap joints are capable to withstand without failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.