Abstract

In this paper we determine the explicit structure of the semisimple part of the Hecke algebra that acts on Drinfeld modular forms of full level modulo T. We show that modulo T the Hecke algebra has a non-zero semisimple part. In contrast, a well-known theorem of Serre asserts that for classical modular forms the action of Tℓ for any odd prime ℓ is nilpotent modulo 2. After proving the result for Drinfeld modular forms modulo T, we use computations of the Hecke action modulo T to show that certain powers of the Drinfeld modular form h cannot be eigenforms. Finally, we pose a question a positive answer to which will mean that the Hecke algebra that acts on Drinfeld modular forms of full level is not smooth for large weights, which again contrasts the classical situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.