Abstract

Third order WENO and CWENO reconstruction are widespread high order reconstruction techniques for numerical schemes for hyperbolic conservation and balance laws. In their definition, there appears a small positive parameter, usually called $\epsilon$, that was originally introduced in order to avoid a division by zero on constant states, but whose value was later shown to affect the convergence properties of the schemes. Recently, two detailed studies of the role of this parameter, in the case of uniform meshes, were published. In this paper we extend their results to the case of finite volume schemes on non-uniform meshes, which is very important for h-adaptive schemes, showing the benefits of choosing $\epsilon$ as a function of the local mesh size $h_j$. In particular we show that choosing $\epsilon=h_j^2$ or $\epsilon=h_j$ is beneficial for the error and convergence order, studying on several non-uniform grids the effect of this choice on the reconstruction error, on fully discrete schemes for the linear transport equation, on the stability of the numerical schemes. Finally we compare the different choices for $\epsilon$ in the case of a well-balanced scheme for the Saint-Venant system for shallow water flows and in the case of an h-adaptive scheme for nonlinear systems of conservation laws and show numerical tests for a two-dimensional generalisation of the CWENO reconstruction on locally adapted meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.