Abstract
We examine the deviation of Cold Dark Matter particle trajectories from the Newtonian result as the size of the region under study becomes comparable to or exceeds the particle horizon. To first order in the gravitational potential, the general relativistic result coincides with the Zel'dovich approximation and hence the Newtonian prediction on all scales. At second order, General Relativity predicts corrections which overtake the corresponding second order Newtonian terms above a certain scale of the order of the Hubble radius. However, since second order corrections are very much suppressed on such scales, we conclude that simulations which exceed the particle horizon but use Newtonian equations to evolve the particles, reproduce the correct trajectories very well. The dominant relativistic corrections to the power spectrum on scales close to the horizon are at most of the order of $\sim 10^{-5}$ at $z=49$ and $\sim 10^{-3}$ at $z=0$. The differences in the positions of real space features are affected at a level below $10^{-6}$ at both redshifts. Our analysis also clarifies the relation of N-body results to relativistic considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.