Abstract

We extend the taming techniques for explicit Euler approximations of stochastic differential equations driven by Levy noise with superlinearly growing drift coefficients. Strong convergence results are presented for the case of locally Lipschitz coefficients. Moreover, rate of convergence results are obtained in agreement with classical literature when the local Lipschitz continuity assumptions are replaced by global assumptions and, in addition, the drift coefficients satisfy polynomial Lipschitz continuity. Finally, we further extend these techniques to the case of delay equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.