Abstract
Adhesion of carrier particles to the luminal surface of endothelium under hemodynamic flow conditions is critical for successful vascular drug delivery. Endothelial cells (ECs) line the inner surface of blood vessels. The effect of mechanical behavior of this compliant surface on the adhesion of blood-borne particles is unknown. In this contribution, we use a phase-plane method, first developed by Hammer and Lauffenburger (1987, "A Dynamical Model for Receptor-Mediated Cell Adhesion to Surfaces," Biophys. J., 52(3), p. 475), to analyze the stability of specific adhesion of a spherical particle to a compliant interface layer. The model constructs a phase diagram and predicts the state of particle adhesion, subjected to an incident simple shear flow, in terms of interfacial elasticity, shear rate, binding affinity of cell adhesive molecules, and their surface density. The main conclusion is that the local deformation of the flexible interface inhibits the stable adhesion of the particle. In comparison with adhesion to a rigid substrate, a greater ligand density is required to establish a stable adhesion between a particle and a compliant interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.