Abstract
We give three examples of non-hyperelliptic curves of genus 4 whose Jacobian varieties are isomorphic to products of four elliptic curves. Two of the examples belong to one-parameter families of curves whose Jacobian varieties are isomorphic to products of two 2-dimensional complex tori. By constructing analogous families, we prove that for each $n>1$, there is a one-parameter family of non-hyperelliptic curves of genus $2n$ whose Jacobian varieties are isomorphic to products of two $n$-dimensional tori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.