Abstract

This paper focuses on spectral distribution of kernel matrices related to radial basis functions. By relating a contemporary finite-dimensional linear algebra problem to a classical problem on infinite-dimensional linear integral operator, the paper shows how the spectral distribution of a kernel matrix relates to the smoothness of the underlying kernel function. The asymptotic behaviour of the eigenvalues of a infinite-dimensional kernel operator are studied from a perspective of low rank approximation--approximating an integral operator in terms of Fourier series or Chebyshev series truncations. Further, we study how the spectral distribution of interpolation matrices of an infinite smooth kernel with flat limit depends on the geometric property of the underlying interpolation points. In particularly, the paper discusses the analytic eigenvalue distribution of Gaussian kernels, which has important application on stably computing of Gaussian radial basis functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.