Abstract

The calculation of the steady state thermal stresses in an isotropic elastic half space or slab with traction free faces has been the subject of several investigations. Steinberg and McDowell (1), using an extension of the Bousinesq-Papkowitch method of isothermal elasticity, first derived the now well-known result that in such a body which contains no heat sources there exists a plane state of stress parallel to the boundary planes. Sneddon and Lockett (2) approached this class of problems by direct solution of the equations of thermoelasticity using a double Fourier integral transform method, the results being transformed to Hankel type integrals in the case of axial symmetry. A further approach due to Nowinski (3) exploits the fact that in steady state thermoelasticity each component of the displacement vector is a biharmonic function which can be expressed as a combination of harmonics. However, possibly the most economical method of solution of this type of problem is that of Williams (4) who expressed the displacement vector in terms of two scalar potential functions, one of which is directly related to the temperature field. The same principle has also been used by Fox (5) in treating thermoelastic distributions in a slab containing a spherical cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.