Abstract

We present an extension of the non-parametric edge-corrected Ohser-type kernel estimator for the spatio-temporal product density function. We derive the mean and variance of the estimator and give a closed-form approximation for a spatio-temporal Poisson point process. Asymptotic properties of this second-order characteristic are derived, using an approach based on martingale theory. Taking advantage of the convergence to normality, confidence surfaces under the homogeneous Poisson process are built. A simulation study is presented to compare our approximation for the variance with Monte Carlo estimated values. Finally, we apply the resulting estimator and its properties to analyse the spatio-temporal distribution of the invasive meningococcal disease in the Rhineland Regional Council in Germany.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.