Abstract

In this work, we analyze a nonendoreversible thermal engine model with a nonlinear heat transfer law between the heat reservoirs and the working fluid under two optimization criteria: the maximum power regime and the so-called ecological criterion. We find that this nonendoreversible model has a similar behaviour to that shown by De Vos (Am. J. Phys. 53, 570 (1985)) for endoreversible models with two thermal conductances with only one superior conductance and with only one inferior conductance, respectively. The model is compared with two sets of real power plants, the first one containing power plants of old design (before 1960's) and the second one being formed by modern nuclear power plants. Our results suggest that the first group was designed under conditions which are reminiscent of a maximum power regime and the second one under an ecological-like criterion. We also study some general properties of nonendoreversible thermal engine models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.