Abstract

The connection between the classical moment problem and the spectral theory of second order difference operators (or Jacobi matrices) is a thoroughly studied topic. Here we examine a similar connection in the case of the second order operator replaced by an operator generated by an infinite band matrix with operator elements. For such operators, we obtain an analog of the Stone theorem and consider the inverse spectral problem which amounts to restoring the operator from the moment sequence of its Weyl matrix. We establish the solvability criterion for such problems, find the conditions ensuring that the elements of the moment sequence admit an integral representation with respect to an operator valued measure and discuss an algorithm for the recovery of the operator. We also indicate a connection between the inverse problem method and the Hermite–Padé approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.