Abstract
Some inverse eigenvalue problems for matrices with Toeplitz-related structure are considered in this paper. In particular, the solutions of the inverse eigenvalue problems for Toeplitz-plus-Hankel matrices and for Toeplitz matrices having all double eigenvalues are characterized, respectively, in close form. Being centrosymmetric itself, the Toeplitz-plus-Hankel solution can be used as an initial value in a continuation method to solve the more difficult inverse eigenvalue problem for symmetric Toeplitz matrices. Numerical testing results show a clear advantage of such an application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.