Abstract

We introduce non-standard, finite-difference schemes to approximate nonnegative solutions of a weakly hyperbolic (that is, a hyperbolic partial differential equation in which the second-order time-derivative is multiplied by a relatively small positive constant), nonlinear partial differential equation that generalizes the well-known equation of Fisher-KPP from mathematical biology. The methods are consistent of order 𝒪(Δ t+(Δ x)2). As a means to verify the validity of the techniques, we compare our numerical simulations with known exact solutions of particular cases of our model. The results show that there is an excellent agreement between the theory and the computational outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.