Abstract
We reduce several computations with Hilbert and Vandermonde type matrices to matrix computations of the Hankel-Toeplitz type (and vice versa). This unifies various known algorithms for computations with dense structured matrices and enables us to extend any progress in computations with matrices of one class to the computations with other classes of matrices. In particular, this enables us to compute the inverses and the determinants of nXn matrices of Vandermonde and Hilbert types for the cost of O(n log2n) arithmetic operations. (Previously, such results were only known for the more narrow class of Vandermonde and generalized Hilbert matrices.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.