Abstract

Abstract The primary objective of this study is to develop two new proximal-type algorithms for solving equilibrium problems in real Hilbert space. Both new algorithms are analogous to the well-known two-step extragradient algorithm for solving the variational inequality problem in Hilbert spaces. The proposed iterative algorithms use a new step size rule based on local bifunction information instead of the line search technique. Two weak convergence theorems for both algorithms are well-established by letting mild conditions. The main results are used to solve the fixed point and variational inequality problems. Finally, we present several computational experiments to demonstrate the efficiency and effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.