Abstract

Social-based routing protocols have shown their promising capability to improve the message delivery efficiency in Delay Tolerant Networks (DTNs). The efficiency greatly relies on the quality of the aggregated social graph that is determined by the metrics used to measure the strength of social connections. In this paper, we propose an improved metrics that leads to high-quality social graph by taking both frequency and duration of contacts into consideration. Furthermore, to improve the performance of social-based message transmission, we systematically study the community evolution problem that has been little investigated in the literation. Distributed algorithms based on the obtained social graph are developed such that the overlapping communities and bridge nodes (i.e., connecting nodes between communities) can be dynamically detected in an evolutionary social network. Finally, we take all the results above into our social-based routing design. Extensive trace-driven simulation results show that our routing algorithm outperforms existing social-based forwarding strategies significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.