Abstract
We consider the set $\mathcal{R}_\mathrm{io}$ of points returning infinitely many times to a sequence of shrinking targets around themselves. Under additional assumptions we improve Boshernitzan's pioneering result on the speed of recurrence. In the case of the doubling map as well as some linear maps on the $d$ dimensional torus, we even obtain a dichotomy condition for $\mathcal{R}_\mathrm{io}$ to have measure zero or one. Moreover, we study the set of points eventually always returning and prove an analogue of Boshernitzan's result in similar generality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.