Abstract
ABSTRACTThis paper concludes our comprehensive study on point estimation of model parameters of a gamma distribution from a second-order decision theoretic point of view. It should be noted that efficient estimation of gamma model parameters for samples ‘not large’ is a challenging task since the exact sampling distributions of the maximum likelihood estimators and its variants are not known. Estimation of a gamma scale parameter has received less attention from the earlier researchers compared to shape parameter estimation. What we have observed here is that improved estimation of the shape parameter does not necessarily lead to improved scale estimation if a natural moment condition (which is also the maximum likelihood restriction) is satisfied. Therefore, this work deals with the gamma scale parameter estimation as a separate new problem, not as a by-product of the shape parameter estimation, and studies several estimators in terms of second-order risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.