Abstract
This paper concerns the specification, and performance, of scale-free prior distributions with a view toward large-scale network inference from small-sample data sets. We devise three scale-free priors and implement them in the framework of Gaussian graphical models. Gaussian graphical models are used in gene network inference where high-throughput data describing a large number of variables with comparatively few samples are frequently analyzed by practitioners. And, although there is a consensus that many such networks are scale-free, the modus operandi is to assign a random network prior. Simulations demonstrate that the scale-free priors outperform the random network prior at recovering scale-free trees with degree exponents near 2, such as are characteristic of many real-world systems. On the other hand, the random network prior compares favorably at recovering scale-free trees characterized by larger degree exponents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.