Abstract

Many scale-free networks exhibit a club structure, where high degree vertices form tightly interconnected subgraphs. In this paper, we explore the emergence of in the context of shortest path based centrality metrics. We term these subgraphs of connected high closeness or high betweeness vertices as rich centrality clubs (RCC). Our experiments on real world and synthetic networks high- light the inter-relations between RCCs, expander graphs, and the core-periphery structure of the network. We show empirically and theoretically that RCCs exist, if the core-periphery structure of the network is such that each shell is an expander graph, and their density decreases from inner to outer shells. We further demonstrate that in addition to being an interesting topological feature, the presence of RCCs is useful in several appli- cations. The vertices in the subgraph forming the RCC are effective seed nodes for spreading information. Moreover, networks with RCCs are robust under perturbations to their structure. Given these useful properties of RCCs, we present a network modification model that can efficiently create a RCC within net- works where they are not present, while retaining other structural properties of the original network. The main contributions of our paper are: (i) we demonstrate that the formation of RCC is related to the core-periphery structure and particularly the expander like properties of each shell, (ii) we show that the RCC property can be used to find effective seed nodes for spreading information and for improving the resilience of the network under perturbation and, finally, (iii) we present a modification algorithm that can insert RCC within networks, while not affecting their other structural properties. Taken together, these contributions present one of the first comprehensive studies of the properties and applications of rich clubs for path based centralities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.