Abstract
Let $g$ be a nonlinear function of the regression parameters $\beta$ in a heteroscedastic linear model and $\hat{\beta}$ be the least squares estimator of $\beta.$ We consider the estimation of the variance and bias of $g(\hat{\beta})$ [as an estimator of $g(\beta)$] by using three resampling methods: the weighted jackknife, the unweighted jackknife and the bootstrap. The asymptotic orders of the mean squared errors and biases of the resampling variance and bias estimators are given in terms of an imbalance measure of the model. Consistency of the resampling estimators is also studied. The results indicate that the weighted jackknife variance and bias estimators are asymptotically unbiased and consistent and their mean squared errors are of order $o(n^{-2})$ if the imbalance measure converges to zero as the sample size $n \rightarrow \infty$. Furthermore, based on large sample properties, the weighted jackknife is better than the unweighted jackknife. The bootstrap method is shown to be asymptotically correct only under a homoscedastic error model. Bias reduction, a closely related problem, is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.