Abstract

We study real algebras admitting reflections which commute. In dimension two, we show that two commuting reflections coincide. We specify the two and four-dimensional real algebras cases. We characterize real algebras of division of two-dimensional to third power associative having a reflection. Finally We give a characterization in four-dimensional, the unitary real algebras of division at third power-associative having two reflections that commute. In eight-dimensional, we give an example of algebra so the group of automorphisms contains a subgroup isomorphic to \(\mathbb{Z}_2\times\mathbb{Z}_2\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.