Abstract

We explore a mechanism of decision-making in mean field games with myopic players. At each instant, agents set a strategy which optimizes their expected future cost by assuming their environment as immutable. As the system evolves, the players observe the evolution of the system and adapt to their new environment without anticipating. With a specific cost structures, these models give rise to coupled systems of partial differential equations of quasi-stationary nature. We provide sufficient conditions for the existence and uniqueness of classical solutions for these systems, and give a rigorous derivation of these systems from N-players stochastic differential games models. Finally, we show that the population can self-organize and converge exponentially fast to the ergodic mean field games equilibrium, if the initial distribution is sufficiently close to it and the Hamiltonian is quadratic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.