Abstract
A connected graph $G$ is of QE class if it admits a quadratic embedding in a Hilbert space, or equivalently if the distance matrix is conditionally negative definite, or equivalently if the quadratic embedding constant $\mathrm{QEC}(G)$ is non-positive. For a finite star product of (finite or infinite) graphs $G=G_1\star\cdots \star G_r$ an estimate of $\mathrm{QEC}(G)$ is obtained after a detailed analysis of the minimal solution of a certain algebraic equation. For the path graph $P_n$ an implicit formula for $\mathrm{QEC}(P_n)$ is derived, and by limit argument $\mathrm{QEC}(\mathbb{Z})=\mathrm{QEC}(\mathbb{Z}_+)=-1/2$ is shown. During the discussion a new integer sequence is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.