Abstract

A representation of a specialization of a q-deformed class one lattice gl(\ell+1}-Whittaker function in terms of cohomology groups of line bundles on the space QM_d(P^{\ell}) of quasi-maps P^1 to P^{\ell} of degree d is proposed. For \ell=1, this provides an interpretation of non-specialized q-deformed gl(2)-Whittaker function in terms of QM_d(\IP^1). In particular the (q-version of) Mellin-Barnes representation of gl(2)-Whittaker function is realized as a semi-infinite period map. The explicit form of the period map manifests an important role of q-version of Gamma-function as a substitute of topological genus in semi-infinite geometry. A relation with Givental-Lee universal solution (J-function) of q-deformed gl(2)-Toda chain is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.