Abstract
The dependability of heterogeneous many-core FPGA based systems are threatened by higher failure rates caused by disruptive scales of integration, increased design complexity, and radiation sensitivity. Triple-modular redundancy (TMR) and run-time reconfiguration (RTR) are traditional fault-tolerant (FT) techniques used to increase dependability. However, hardware redundancy is expensive and most approaches have poor scalability, flexibility, and programmability. Therefore, innovative solutions are needed to reduce the redundancy cost but still preserve acceptable levels of dependability. In this context, this paper presents the implementation of a self-healing adaptive fault-tolerant SoC that reuses RTR IP-cores in order to self-assemble different TMR schemes during run-time. The presented system demonstrates the feasibility of the Upset-Fault-Observer concept, which provides a run-time self-test and recovery strategy that delivers fault-tolerance over functions accelerated in RTR cores, at the same time reducing the redundancy scalability cost by running periodic reconfigurable TMR scan-cycles. In addition, this paper experimentally evaluates the trade-off of the implemented reconfigurable TMR schemes by characterizing important fault tolerant metrics i.e., recovery time (self-repair and self-replicate), detection latency, self-assembly latency, throughput reduction, and increase of physical resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.