Abstract
ABSTRACTIn this paper, we discuss a progressively censored inverted exponentiated Rayleigh distribution. Estimation of unknown parameters is considered under progressive censoring using maximum likelihood and Bayesian approaches. Bayes estimators of unknown parameters are derived with respect to different symmetric and asymmetric loss functions using gamma prior distributions. An importance sampling procedure is taken into consideration for deriving these estimates. Further highest posterior density intervals for unknown parameters are constructed and for comparison purposes bootstrap intervals are also obtained. Prediction of future observations is studied in one- and two-sample situations from classical and Bayesian viewpoint. We further establish optimum censoring schemes using Bayesian approach. Finally, we conduct a simulation study to compare the performance of proposed methods and analyse two real data sets for illustration purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.