Abstract

Many clustering methods, such as K -means, kernel K -means, and MNcut clustering, follow the same recipe: (i) choose a measure of similarity between observations; (ii) define a figure of merit assigning a large value to partitions of the data that put similar observations in the same cluster; and (iii) optimize this figure of merit over partitions. Potts model clustering represents an interesting variation on this recipe. Blatt, Wiseman, and Domany defined a new figure of merit for partitions that is formally similar to the Hamiltonian of the Potts model for ferromagnetism, extensively studied in statistical physics. For each temperature T, the Hamiltonian defines a distribution assigning a probability to each possible configuration of the physical system or, in the language of clustering, to each partition. Instead of searching for a single partition optimizing the Hamiltonian, they sampled a large number of partitions from this distribution for a range of temperatures. They proposed a heuristic for choosing an appropriate temperature and from the sample of partitions associated with this chosen temperature, they then derived what we call a consensus clustering: two observations are put in the same consensus cluster if they belong to the same cluster in the majority of the random partitions. In a sense, the consensus clustering is an “average” of plausible configurations, and we would expect it to be more stable (over different samples)than the configuration optimizing the Hamiltonian.The goal of this article is to contribute to the understanding of Potts model clustering and to propose extensions and improvements: (1) We show that the Hamiltonian used in Potts model clustering is closely related to the kernel K -means and MNCutcriteria. (2) We propose a modification of the Hamiltonian penalizing unequal clustersizes and show that it can be interpreted as a weighted version of the kernel K -meanscriterion. (3) We introduce a new version of the Wolff algorithm to simulate configurations from the distribution defined by the penalized Hamiltonian, leading to penalized Potts model clustering. (4) We note a link between kernel based clustering methods and nonparametric density estimation and exploit it to automatically determine locally adaptive kernel bandwidths. (5) We propose a new simple rule for selecting a good temperature T.As an illustration we apply Potts model clustering to gene expression data and compare our results to those obtained by model based clustering and a nonparametric dendrogram sharpening method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.