Abstract

In the last two decades, many computational problems arising in cryptography have been successfully reduced to various systems of polynomial equations. In this paper, we revisit a class of polynomial systems introduced by Faugere, Perret, Petit and Renault. Based on new experimental results and heuristic evidence, we conjecture that their degrees of regularity are only slightly larger than the original degrees of the equations, resulting in a very low complexity compared to generic systems. We then revisit the application of these systems to the elliptic curve discrete logarithm problem (ECDLP) for binary curves. Our heuristic analysis suggests that an index calculus variant due to Diem requires a subexponential number of bit operations $(O2^{c\,n^{2/3}\log n})$ over the binary field ${\mathbb F}{2^n}$, where c is a constant smaller than 2. According to our estimations, generic discrete logarithm methods are outperformed for any n>N where N≈2000, but elliptic curves of currently recommended key sizes (n≈160) are not immediately threatened. The analysis can be easily generalized to other extension fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.