Abstract

The dynamics of solid state dewetting phenomena of a 50 nm thick, mazed bicrystalline Al film on single crystalline α-Al2O3 (sapphire) substrates was studied in-situ using an environmental scanning electron microscope (ESEM). The bicrystalline Al thin films served as a model system where the influence of grain boundaries and texture effects are well determined compared to polycrystalline films. The experiments were performed in controlled oxidizing and reducing atmospheres at 773 K and 823 K, respectively, to shed light on the differences in dewetting mechanisms and dynamics. While the reducing atmosphere led to spontaneous dewetting at 823 K after an incubation time of a few minutes, a hierarchical dewetting process was observed for the sluggish dewetting under oxidizing conditions. Voids initiated at (substrate or surface) defects and expanded trying to maintain a hexagonal shape. Pinning and depinning processes led to a discontinuous void growth and irregular void shapes including finger instabilities. As a consequence, the void growth followed a variety of power law exponents between 0.10 and 0.55. A new microkink-flow mechanism was discovered at the terminating Al planes at the void.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.