Abstract

AbstractAssume that G is a finite group, N is a nontrivial normal subgroup of G and p is an odd prime. Let $\mathrm{Irr}_p(G)=\{\chi \in \mathrm{Irr}(G) : \chi (1)=1~\mathrm{or}~ p \mid \chi (1)\}$ and $\mathrm{Irr}_p(G|N)=\{\chi \in \mathrm{Irr}_p(G) : N \not \leq \mathrm{ker}\,\chi \}$ . The average character degree of irreducible characters of $\mathrm{Irr}_p(G)$ and the average character degree of irreducible characters of $\mathrm{Irr}_p(G|N)$ are denoted by $\mathrm{acd}_p(G)$ and $\mathrm{acd}_p(G|N)$ , respectively. We show that if $\mathrm{Irr}_p(G|N) \neq \emptyset $ and $\mathrm{acd}_p(G|N) < \mathrm{acd}_p(\mathrm{PSL}_2(p))$ , then G is p-solvable and $O^{p'}(G)$ is solvable. We find examples that make this bound best possible. Moreover, we see that if $\mathrm{Irr}_p(G|N) = \emptyset $ , then N is p-solvable and $P \cap N$ and $PN/N$ are abelian for every $P \in \mathrm{Syl}_p(G)$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.