Abstract
The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem is basically ill-posed for the L∞-initial data in the class of weak entropy solutions. As a consequence, there are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and Froude number are proportional to a small parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.