Abstract

The urgent need for the precise, real-time position metrology between the optical components in a modern space camera is becoming more critical with the increased resolution, aperture, focal length, and light-weighted structure. Gravity offload, composite material humidity desorption, temperature cyclical variation with the illumination, and micro-vibration on platform would introduce unpredictable affect to decrease the imaging quality. The solution of the optical system disorders would mainly rely on the ground-based stimulation and on that basis, active optics compensation, which could not be accurate. This influence expands within the opto-mechanical structure complexity. This paper represents an implement solution for position and attitude metrology used for on-orbit real-time measurement. To deal with the contradiction of system accuracy and simplicity, we simplified the system to a measurement model equivalent to 6 degree of freedom Stewart Platform structure. The works on this paper tightly coupled to the accuracy requirement of a long focal length optical system. After carefully compare the systematic requirement and balance the implementation costs, we applied the common-path, multi-channel heterodyne interferometers to accomplish the large-scaled coarse measurement for the step disturbance and small-range fine measurement to sense the ambient vibration. The metrology accuracy analysis and error evaluation indicated an effectiveness of this metrology system, which met the requirement of our given optical system. It was indicated in this paper that the metrology method could be generalized in other optical systems and similar long focal length optical systems in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.